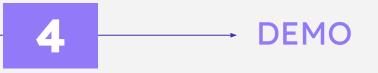
FINAL

BONES DETECTION Image Processing

Jacopo Caratti and Cyrill Rohrbach

- • •
- . . .
- . . .
-
- •
 - . . .

TABLE OF CONTENTS


PROBLEMATIC

Analysis of the image processing task

2

IDEA

Strategy and theory to solve the problem

IMPLEMENTATION

- Choices and construction of
- • the algorithms
- • •

RESULTS

Application of the program to real images

• • •

RECAP

Segment bones in the given hand radiography images

MAGIC

OUTPUT

IMPLEMENTATION

.

- . . .
- . . .
- • •
- . . .
- . . .
- •••
- . . .

I MASK GENERATION

Create mask of the bones

Preprocessing 1

Normalization

Transform pixel values to values between 0-255

Clahe Histogram Equalization

Adaptive histogram equalization

Butterworth High Pass Filter

Removes low-frequency (hand) preserving high-frequency components (bones)

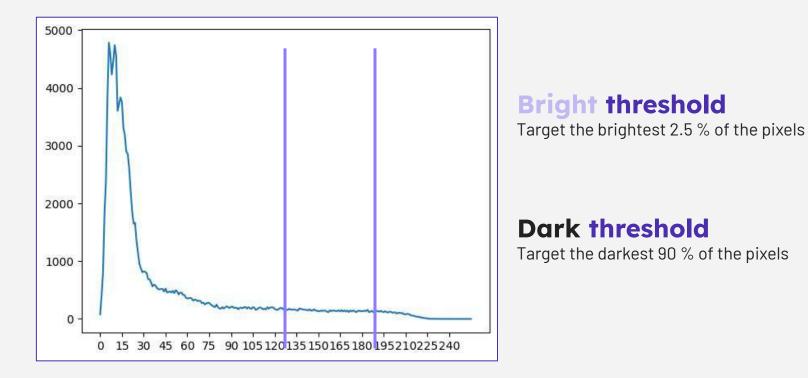
MASK GENERATION

MASK GENERATION

Preprocessing 2

Make bright brighter

 Highlight the bones Multiply by 0.5 all pixel values less than a threshold


Make dark darker

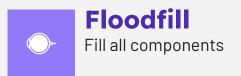
Hide the hand Multiply by 3 all pixel values higher than a threshold

Challenge: Determine the thresholds

Thresholds Calculation

MASK GENERATION

Preprocessing 3


Binarization

Pixels should either be 0 or 255 **Threshold**: Bright 12.5 % should be 255 others 0

MASK GENERATION

Fill the holes

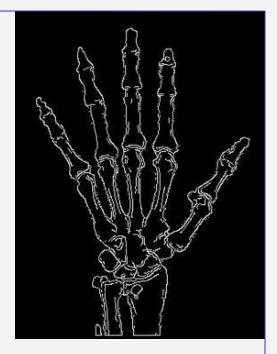
Smooth

Smooth the image using Gaussian blur to get more closed components

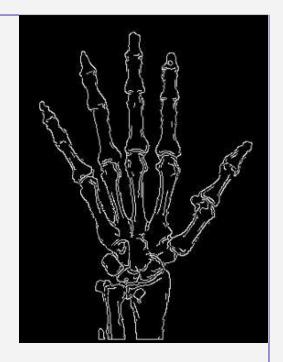
II MASK APPLICATION

Apply the mask to the original image

III EDGE DETECTION


Detect bones in masked image

Canny filter


Gaussian filter; Sobel filter; Non-maximum suppression; Double thresholding; Hysteresis

Small segments removal

Discard little not connected white spots


EDGE DETECTION

Draw Red Lines

Take the original image and color each pixel that is white in the edge map.

. . .

- . . .
- . . .
- . . .
- . .
- . . .

RESULTS

- - . . .
- .
- . . .

R

RESULTS

A DEMO IS WORTH A THOUSAND WORDS

BONES DETECTION

CONCLUSIONS

- Recognized to be a tricky task
- Satisfied of the results
- Possible improvements, such as better hyperparameters tuning

• • •

LEARNINGS

- Explore numerous techniques
- Mix/Adaptation existing techniques
- Parallelize techniques
- Canny edge detector
- Here it is important to have similar images

. . .

Thank you for the attention!

Please clap and don't make difficult question

SOURCES

- . . .
- . . .
- . . .
- - •••
 - • •

IMAGES

• Provided radiography dataset

INFORMATION

- Lecture slides
- <u>Geeksforgeeks</u>
- <u>Wikipedia</u>
- <u>Opency documentation</u>

SLIDES

. . .

• This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik