
Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 1 

 

1. INTRODUCTION 
I was asked to implement a twitter search engine, which supported both the normal query terms search and 

emojis search. In addition, another feature that the system must present is the query expansion: the user 

must be able to define a series of synonyms, which will then be used to expand the query. 

2. DESIGN 

SCRAPING 

The first need was to get a large collection of tweets. I thought 10’000 was a good size for a large collection of 

tweets, which was also confirmed to me by the assistant Ivan Sekulic. As advised in class, I used Scrapy
1
 to 

scrape the 10’000 tweets. Scrapy is a Python framework that is used to build web scraping spiders. 

To build and run a spider that works correctly and is not blocked by the target site, it is necessary that the 

spider respects the instructions contained in the robots.txt file of the site in question. So, I read the robots.txt 

file of Twitter. Unfortunately, the company only allow a few pages to be scraped: 

1. Allow: /*?lang= 

2. Allow: /hashtag/*?src= 

3. Allow: /search?q=%23 

4. Allow: /i/api/ 

My initial idea was to build a spider capable of scraping 10'000 random tweets, but the limitations of the 

robots.txt file didn't allow me to. I could just build a spider that would search for all the tweets containing a 

certain hashtag (2), containing a certain term (3), or make calls to their API. Furthermore, I had the possibility 

to search for any of the previous contents, specifying the language (1). 

So, I decided to use the second type of search: look for tweets containing a particular hashtag. This way, I 

would have obtained my file containing 10’000 tweets. So, if for example I want to search all the tweets 

containing the hashtag #hello, the final part of the URL will be: 

  /hashtag/hello 

I said the final part, because I also had to decide the first part of the URL. When I started building the spider, I 

immediately noticed problems sending requests and downloading information from the website 

www.twitter.com. For this, I did some research on the internet and found numerous users who recommended 

sending requests to the mobile version of twitter www.mobile.twitter.com. So I did, and I haven’t had any 

more problems of any kind. Hence, the complete URL from which my spider started is: 

 https://www.mobile.twitter.com/hashtag/hello 

However, it didn't seem like a great idea, since looking for tweets containing the same hashtag, I would have 

obtained 10’000 tweets containing also the same hashtag, so almost about the same topics. In addition, 

building the scraper that I then used, I noticed that Twitter does not allow to scraper more than 20 tweets per 

page, so per hashtag, with the same request. 

                                                                        
1
  https://scrapy.org/ 

https://twitter.com/hashtag/hello


Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 2 

Here, I got the idea on which my project is based. To work around these limitations, I decided to search by 

hashtag by providing numerous terms instead of just one. This way I could send multiple scrape requests, 

each for a different hashtag, and each retrieving 20 tweets, ending up with a list of 10’000 tweets related to 

different topics. Therefore, I built a single spider which in turn sent requests for different hashtags. 

For each hashtag I would have retrieved 20 tweets, but if some kind of error would have occurred, it may be 

that for each scrape request I would have obtained less than 20 tweets. What I did was calculate how many 

hashtag-search-terms I would have needed to get 10’000 tweets, considering the possibility of not getting 

exactly 20 tweets per search. This calculation is very simple: 1 𝑡𝑒𝑟𝑚20 𝑡𝑤𝑒𝑒𝑡𝑠 = 𝑛 𝑡𝑒𝑟𝑚10′000 𝑡𝑤𝑒𝑒𝑡𝑠 => 𝑛 = 500 

To be safe, I then decided to add 50 terms, ending up with 550 hashtag-search-terms. But how to get 550 

random unique terms in an easy-to-read format? This is where the www.randomlists.com
2
 comes into play. In 

fact, this website allows you to generate a maximum number of 2’467 random terms and to easily copy the 

result, in order to obtain a file with a term for each line. This is exactly what I did: I told the website to 

generate 550 random terms and I copied them into the words.txt file, that you can find attached. 

TWEET STRUCTURE 

 
 

FIGURE 1 – EXAMPLE OF TWEET 

A tweet is displayed in different ways, depending on its 

content: it can contain a picture, a video, a text, hashtags, 

emojis, links, or just some of these. 

 

Here on the left you can find an example of a tweet.
3
 

 

There is the name, username and profile picture of whoever 

wrote it, the date it was posted and the statistics of the 

tweet: number of comments, shares and likes. 

Furthermore, the tweet does not contain a simple text, but a 

text, an emoji, many hashtags, and a link to an article. 

Therefore, I decided to extract only some information from 

each tweet, what seemed to me to be the most important 

and useful to represent a tweet. Some of them may be 

absent in some other tweets. 

 

For instance, a tweet like the one shown in Figure 1 contains many hashtags. A different tweet may not even 

contain hashtags, but contain a picture. 

The following list shows how I schematized and analyzed each tweet: 

url The URL of the tweet 

date The creation date of the tweet 

full_name The name of the user who wrote the tweet 

                                                                        
2
 https://www.randomlists.com/random-words 

3
 You can find this tweet at the link: https://twitter.com/chidambara09/status/1317749123102109697 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 3 

username The username of the user who wrote the tweet 

profile_pic The profile picture of the user who wrote the tweet 

content The text contained in the tweet  

metadata The URL of the photo contained in the tweet 

hashtag The list of hashtags present in the tweet done with # 

tag The list of tags present in the tweet done with @ 

likes The number of likes the tweet has 

retweets The number of retweets the tweet has 

repost The number of reposts the tweet has 

emoji The list of emojis present in the tweet 

I decided to save my entire collection of tweets in a json file, as I have worked with such files before and know 

how they behave. So, from the folder where the spider was located, I executed the following command in the 

command line to run the spider: 
 

> scrapy crawl twitterscraper -O tweets.json 
 

As the documentation
4
 says, this command tells scrapy to start crawling with the spider named twitterscraper, 

and save the result in a file named tweets.json. The -O flag indicates that if a file with the same name already 

exists, its contents will be overwritten. 

Once I got the json file containing the collection of 10'000 tweets, I started the Solr server and indexed the 

tweets.
5
 I used Solr to index the data as recommended by the professor. 

TECHNOLOGIES 

I had many ideas for the project, but how to connect all the pieces together? Last year, for the Software 

Atelier 3 course, we built pushapp, a single-page web app dedicated to the world of fitness. I found the single 

page factor interesting, and I therefore decided to propose it again in this project. But I had to decide which 

system to use to create the user interface. Since in the internship offered this year in the Field Project Atelier 

course, the company Zucchetti SA Switzerland asked me to build a web app using Vue.js, I decided to use the 

same system here, so as to increase my familiarity with it. Vue.js is a javascript framework for creating user 

interfaces and single-page applications, exactly what I need!
6
 

MAKE REQUESTS 

Usually, to retrieve data you need to make calls to a backend part, which takes care of managing the 

interactions with the server and returning the data to the frontend part. Since I used Solr to index tweets, we 

can make calls directly to the virtual server on which Solr is running. The address of this server depends on our 

initial configuration of the Solr collection. In my case it is localhost: 8983. 

                                                                        
4
 https://docs.scrapy.org/en/latest/intro/tutorial.html 

5
 https://lucene.apache.org/solr/guide/8_6/solr-tutorial.html#solr-tutorial 

6
 https://vuejs.org/ 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 4 

 
 

FIGURE 2 – TYPICAL SOLR RESPONSE TO A QUERY 

By accessing the Solr server from a browser and 

going to the part dedicated to queries, we can search 

our indexed tweets. For example, if we want to 

search by username, we need to specify the search 

field, username in this case, and the value we are 

looking for, for example lucybishop2012. By clicking 

on Execute query, our search results will be shown, 

complete with search statistics, such as speed and 

number of results for this query. 

 

In the upper part a URL is displayed, which if clicked takes us to a page containing the same result obtained 

before. By making a GET call from a frontend part to the same URL, we can achieve this in our web app. The 

URL is the following: 

 http://localhost:8983/solr/tweets/select?q=username%3Alucybishop2012 

By analyzing it, we can identify a structure: the part in orange contains the localhost on which the Solr server 

is running plus the name of our collection. The part in blue is the dynamic one, which by modifying it allows us 

to search for all kinds of tweets. 

Here, I had some problems, as the CORS policies did not allow me to make requests from an external domain 

as the localhost on which tweetsearch was running. So, after a lot of research and attempts, I added the piece 

of code between lines 25 and 45 in the Solr configurations web.xml file. This file is located at path solr-

8.6.2/server/solr-webapp/webapp/WEB-INF. I leave my web.xml file as an attachment. 

In my application, I perform two different types of queries: filtered and not. For the non-filtered I modified the 

Solr schema file by adding a copy filed, so that I could perform a query search over the content of the tweet, 

the username and the full name of the author at the same time. The way I built the URL query is the following: 

 http://localhost:8983/solr/tweets/select?q={query_inserted}&rows=50 

With filtered queries, we can filter tweets by specifying values for hashtags, usernames and full names. The 

way the query is built is the following: 

 http://localhost:8983/solr/tweets/select?q={filter_selected}%3A{query_inserted}&rows=50 

In both cases, I retrieved a maximum number of 50 tweets by adding the rows=50 parameter to the query 

URL. I decided 50 because according to my experience as a web user: nobody ever browses too many results. 

Rather, he decides to modify the entered query to find more relevant documents. 

3. IMPLEMENTATION 

COMPONENTS 

When I started thinking about how to structure the project, I immediately thought that I might need several 

pages. For this I decided to insert a menu, through which you could navigate between them. This way I could 

expand the project as I pleased, without disturbing the pages already created. 

http://localhost:8983/solr/tweets/select?q=%7bfilter_selected%7d%3A%7bquery_inserted%7d&rows=50


Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 5 

Since I chose to have a simple, intuitive and easy to use design, the search page should not contain too many 

elements, capable of disturbing the user's attention. Therefore, I positioned the menu so that it was only 

shown when the Menu button was clicked (a kind of pop-up). 

Also, I immediately recognized the idea of designing a custom logo as nice, you can see it in Figure 3. 

 

FIGURE 3 – LOGO OF TWEETSEARCH 

The tweetsearch interface is divided into 3 pages: Search, Thesaurus, and Credits. Each of these pages is 

presented in detail in the following sections. 

i) SEARCH 

This is also the main project page, the one I started designing first. I started thinking about what elements I 

would need to build a search engine dedicated to tweets, with also the ability to search by emoji and the 

query expansion feature. 

Sure, I would have needed a search bar and a search button, and since the system had to support emoji 

search and the computer doesn't have an emoji keyboard, I decided to add a virtual one. I wanted a filter, 

through which it would be possible for a user to filter the field he was looking for during the search. 

Furthermore, to support the query expansion feature with synonyms, I wanted to add a section to load your 

own synonym thesaurus (for more details on this feature take a look at Thesaurus section). Finally, I had to 

choose how and where to represent the tweets. 

These components had to be central, so I decided to place them in the center of the page, so as to be of 

greater impact. Error! Reference source not found. shows the sketch of the project interface made before 

starting so to have a reference, and the interface of the project once completed. 

  
 

FIGURE 4 – INTERFACE: FROM SKETCH TO FINAL RESULT 

As you can see, I changed a bit the layout: I found better to display the emoji keyboard below the search bar. 

Most important, I decided to add a more technical field: the Statistics Box. It appears only after entering a 

query, and contains information on the tweets obtained: the query entered, how many relevant tweets for 

this query there are in the collection, the score of the most relevant tweet and the time required to satisfy the 

request: 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 6 

 

FIGURE 5 – STATISTICS BOX 

ii) THESAURUS 

The purpose of this page is to allow a user to create their own synonym thesaurus to expand the query while 

searching. Figure 6 shows the process of creating a dictionary. The user enters a minimum of two terms (less 

than two would not make sense in the case of synonyms) and creates a dictionary entry. After creating as 

many entries as he likes, the dictionary is ready to be downloaded by clicking on the green button.  

 
 

 
 

  
 

FIGURE 6 – SYNONYMS THESAURUS CREATION PROCESS 

The file will be downloaded to the download folder in a file called synonyms.json. I chose to save the 

dictionaries in json format because I am more familiar with this type of file. Also, I needed to define a standard 

file format for the dictionaries so that I could process them all in the same way when searching. 

Once the user has created its own synonym thesaurus, he can import it into the Search page by clicking on the 

Upload Thesaurus button. The scripts will automatically process the inserted file, expanding the query. 

iii) CREDITS 

The page contains information about the birth of this project and I briefly introduce myself. 

4. EVALUATION 
In order to test how users perceive tweetsearch I performed a user evaluation, which «refers to a collection of 

methods, skills and tools utilized to uncover how a person perceives a system before, during and after 

interacting with it»
7
. 

                                                                        
7
 https://en.wikipedia.org/wiki/User_experience_evaluation 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 7 

I asked 5 real people to be participant to this user evaluation. They are 3 of my companions from USI and a 

friend of mine who studies computer science at ETHZ. So, everyone has good IT knowledge, uses search 

engines frequently and has an idea of how they work. I then built 5 artificial tasks for each user to perform, 

that I presented in the following order of difficulty: 

1. Make a search about what you want and report how many relevant documents are found. 

2. Search for tweets containing hashtag «hello» and scroll all the tweets to find the one last retrieved. 

3. Search for all the tweets containing the emoji «฀». 

4. Search for the first tweet containing information about «obama» and «trump» and report the date of 

the tweet, number of likes and retweets. 

5. Create a synonym thesaurus in which «good» is a synonym of «bad», download, use and remove it. 

I decided to collect data using the Google Forms
8
 service offered by Google, which automatically presents the 

results in understandable graphs. The data are semi-quantifiable thanks to the Likert charts that I used to 

collect them. I have divided the form-data collection into three parts: the first consists of asking the name and 

the consent to the user. The second is carried out during the performance of each task, and I ask questions 

related to the current task. The same questions are proposed for all tasks. The third is carried out at the end of 

the experiment and contains questions related to the general use of the system. In Figure 7 I have reported 

the questions asked. 

 
 

 

 

 

FIGURE 7 - THE QUESTIONS I ASKED USERS DURING AND AFTER THE SYSTEM EVALUATION 

 

                                                                        
8
 https://www.google.com/forms/about/ 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 8 

METHODOLOGY 

The conduct of the user evaluation is simple: I briefly introduce my search engine, explaining its nature and its 

characteristics at a high level, without influencing the user. After that, I give the user 5 minutes to explore and 

become more familiar with tweetsearch. After this training phase, I provide the first task to be performed, the 

easiest one, in an unlimited time. The user can perform as many queries as he wants. 

When the user completes the task, he receives the first part of the form, in which he has to answer some 

questions. If the user fails to complete the task by himself, he is helped: this is taken into account in the form-

data collection. 

Once all the tasks have been performed and the questions related to them have been answered, the last part 

of the form is presented to the user. Here, we collect information about the general use of the system. 

5. RESULTS 
I present and comment the graphs I have built on the basis of the data collected. 

GENERAL 

 Figure 8:          1 = ‘Clear and intuitive’        |        5 = ‘Hard and non-intuitive’ 

 
 

FIGURE 8 - USABILITY OF THE INTERFACE 

 
 

FIGURE 9 - WOULD YOU USE TWEETSEARCH? 

 

Most of the participants liked the interface, finding it simple and easy to use. Also, for this reason they were 

able to complete the tasks without encountering particular difficulties. But none of my users would use 

tweetsearch. Half only Maybe, while the other half would not use it. I investigated the reason by asking the 

user directly about the reason for this choice. All stated that they would not use it simply because they do not 

use Twitter, and therefore they would not have the need. 

TASK-RELATED 

 
 

FIGURE 10 - ABILITY TO COMPLETE TASKS BY YOURSELF 

 
 

FIGURE 11 - RELEVANTNESS OF RESULTS 

 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 9 

The two questions shown in Figure 10 and Figure 11 were asked for each task. In all cases the answer was the 

same: the task was within the reach of the user, who was able to complete it without needing help, and the 

results were Related. 

 Figure 12: 

o Level of difficulty:         1 = ‘Very easy’        |        5 = ‘Impossible’ 
o Speed in executing task:               1 = ‘Very fast’        |        5 = ‘Very slow’ 

 
Level of difficulty 

 

Speed in executing the task 

 

Task 1 

 
 

 
 

Task 2 

 
 

 
 

Task 3 

 
 

 
 

Task 4 

 
 

 
 

Task 5 

 
 

 
 

FIGURE 12 - DIFFICULTY AND SPEED OF EXECUTION OF EACH TASK 

As you can see, all the tasks were found to be quite simple, and performed in a reasonable time. The first task, 

as expected, was the easiest and quickest to complete, as I wanted the user to start with a simple one. The 

one that generally took the longest time is the 5, concerning the creation and use of a thesaurus. Users did not 

take too long to perform this task but based on the timing to complete the previous four tasks, even simpler, 

it took a few more moments. Moreover, in a Likert chart from 1 to 5, task 5 was also given a difficulty level of 2 

by half of the users. I asked users for clarification, as this had never happened in other tasks. They told me 

that they managed to solve it without problems, but that they cannot put the difficulty of this task on the 

same level as the previous four. 

Only one user found task 3 more difficult because. This happened because the user forgot to remove the 

hashtag filter used previously in task 1, and he could not understand why he did not find the expected results. 

Then, he solved it and moved on to the next one. 



Jacopo Caratti Multimedia Information Access and Retrieval Year 2020-21 

 10 

SUGGESTIONS 

Talking freely with the user, during and after the performance of the tasks, I wrote down some of their 

suggestions and general reflections on the system. I also collected some through the last question 'Would you 

change something in the system?'. 

In general, all users have noticed and appreciated the simplicity and clarity of the system – exactly what I set 

out to build – which makes the system intuitive and easy to use. This already came out of Figure 8. 

As I mentioned in General, many would not use the system simply because they do not use Twitter, but they 

later stated that if they did, they would appreciate a system like tweetsearch. 

A user suggested to add the ability to sort tweets while searching. The idea is very interesting, in fact I had 

even thought about it, but unfortunately it cannot be applied with notable results. This is because I crawled 

the tweets using the hashtags they contain (take a look at Scraping section), taking the first results on 

Twitter. These results were globally the last written and most popular tweets containing that particular 

hashtag. So almost all of the tweets in my collection were produced on the same day. But with a larger 

collection, perhaps originated in another way, this feature could surely be added. Also because implementing 

it would be easy, since the date of each tweet is saved by the spider. 

It might also be interesting to put a more prominent warning that you are using a synonym thesaurus or that a 

filter is selected. This warning already exists but, as revealed in task 2 in Figure 12, some users may struggle. 

Another suggestion, coming from a single user, is to add dark mode to the system. I've thought about it and it 

might be a nice idea, as the interface is very bright, and it might be annoying to the eyes. This feature may 

also be added in the future. 

6. CONCLUSIONS 
I am satisfied with tweetsearch. I set myself some goals and managed to build a search engine that respected 

them all: intuitive and easy to use. This also emerged from the user evaluation. 

The system appears to be reliable, in the sense that given a query it returns the most relevant tweets and 

satisfies the emoji search and query expansion. Both of these features are simple to use, and users have 

managed to complete them without too many problems. 

To conclude, given the feedbacks and my impressions on the project, the base of the project is solid and well 

designed, ready to be expanded in the future with more features such as temporal sorting of tweets. 

7. SUBMISSION FOLDER 

 Information about how to run the project: README.txt 

 Collection of tweets: tweets.json 

 Report: tweetsearch_report.pdf 

 Presentation: tweetsearch_presentation.pptx 

 Project folder: tweetsearch 

 Scraper folder: twitter 

 Hashtag-search terms: words.txt 

 User evaluation results: tweetsearch_data.csv 

 Solr folder: solr-8.6.2 


	1. Introduction
	2. Design
	Scraping
	Tweet Structure

	I decided to save my entire collection of tweets in a json file, as I have worked with such files before and know how they behave. So, from the folder where the spider was located, I executed the following command in the command line to run the spider:
	Technologies
	Make requests

	3. Implementation
	Components
	i) Search
	ii) Thesaurus
	iii) Credits


	4. Evaluation
	Methodology

	5. Results
	General
	Task-related
	Suggestions

	6. Conclusions
	7. Submission folder

